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Water-wave scattering by an ice-strip
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Abstract. The problem of water-wave scattering by a strip of ice-cover floating on the surface of deep water is
investigated here. The ice-cover is modelled as a thin elastic plate of very small thickness. The problem is reduced
to that of solving two singular integral equations of Carleman type over a semi-infinite range and are solved
approximately by casting them into two separate Riemann-Hilbert problems by assuming the strip width to be
large. The reflection and transmission coefficients are derived approximately. Numerical results for the reflection
coefficient are presented graphically against the wave number and also against the ice-cover parameter. The oscil-
latory nature of the reflection coefficient against the wave number as well as the ice-cover parameter is found to
be one of the main features of the curves. It is also seen that, in the limiting case when the ice-cover parameter
tends to zero (i.e., the ice-cover is almost absent), the amount of reflection is negligible.
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1. Introduction

The scattering of surface water waves by several discontinuities has been a problem of
long-standing interest. If some part of the surface of water is covered by ice and the remain-
ing part is free, then discontinuities occur in the surface boundary conditions. Again, the ice
may be classified into two categories. In the first category it is modelled as an inertial sur-
face composed of discrete particles having no elasticity. Another classification is to model the
ice-sheet as a thin elastic plate. In that case the related scattering problem is very important
because of its application in the construction of very large floating structures and in ice-wave
interaction problems in polar regions.

Evans and Davies [1] considered the problem of scattering of obliquely incident waves on
a semi-infinite thin elastic plate in water of finite depth. They used the Wiener-Hopf tech-
nique to obtain an exact solution of the problem. However, the solution was too compli-
cated for obtaining numerical results. This has been overcome recently by Chung and Fox
[2] using some efficient algebraic manipulations. Gol’dshtein and Marchenko [3] and Tka-
cheva [4–6] also used the Wiener-Hopf technique to study some related scattering problems
involving deep, as well as finite-depth water. Earlier on, Fox and Squire [7] used a matching
technique where matching was achieved by minimizing a certain error integral evaluated at
the point of discontinuity on the upper surface of water to obtain the reflection and trans-
mission coefficients for the problem originally considered by Evans and Davies [1]. The res-
idue-calculus technique is a somewhat simple alternative method compared to the difficult
Wiener-Hopf technique, which has been successfully applied in the water-wave literature by
Linton [8], Linton and Chung [9], Chung and Linton [10] to investigate wave-scattering prob-
lems involving a rigid dock as well as ice-sheets. Hermans [11, 12] recently used a method
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based on solving an integral equation along the region of the water surface which contains a
floating dock or floating ice (thin elastic plate), by means of a superposition of exponential
functions. This method is somehow related to the residue-calculus technique. Two-dimensional
scattering of normally incident surface water waves in deep water was considered by Chak-
rabarti [13, 14] wherein a point of discontinuity arises due to two semi-infinite inertial sur-
faces and a semi-infinite ice-cover floating on clean water, respectively. Both problems were
solved exactly by reducing them to Carleman-type singular integral equations over a semi-
infinite range. The physical quantities of interest, namely the reflection and the transmission
coefficients, were then derived in explicit forms.

If the ice-cover is in the form of a finite strip instead of a semi-infinite one, explicit solu-
tions are no longer possible to obtain. In the present paper we consider a thin sheet of ice
of finite width, but infinitely long in its spread and is floating on the surface of deep water.
The problem is formulated in terms of appropriate velocity potentials in the regions below
the free surface and below the strip. Using Havelock’s inversion theorem we reduce it to
two coupled singular integral equations of the Carleman type. Assuming the width of the
strip to be large, these equations are decoupled and then solved approximately by convert-
ing them into two Riemann-Hilbert problems. We call the solutions to the decoupled equa-
tions the zero-order solutions and use them in the coupled integral equations and again solve
them for the first-order approximate solutions by a similar method. This is a sort of itera-
tion process and, in principle, can be applied to obtain higher-order iterative solutions. But
we confine ourselves to first-order solutions only, since the first-order approximations to the
reflection and transmission coefficients yield results that are quite satisfactory. The numerical
results for the reflection coefficient so obtained are presented graphically in a number of fig-
ures. Multiple reflections have been noticed to be the key feature of every figure. Making the
ice-cover parameter very small, it is observed that the reflection coefficient becomes almost
zero, as expected.

2. Mathematical formulation of the problem

A two-dimensional rectangular Cartesian co-ordinate system (x, y) is chosen in which the
y-axis is taken vertically downwards into the water which is homogeneous with constant den-
sity ρ and inviscid. Suppose a strip of ice-cover of width l occupies the region y = 0,0<
x < l. The strip is assumed to be infinitely long along the horizontal z-direction. Consider-
ing two-dimensional and time-harmonic motion with angular frequency σ and linear theory,
if �(x, y, t)= Re{φ(x, y)e−iσ t } denotes the velocity potential describing the motion, we have
that φ satisfies the Laplace’s equation

∇2φ=0, y≥0, −∞<x<∞, (2.1)

the free-surface condition

Kφ+φy =0 on y=0, −∞<x<0 and x > l (2.2)

and the condition on the ice-cover

Kφ+φy +Dφyxxxx =0 on y=0, 0<x<l, (2.3)

where D= Eh3

12(1−ν2)ρg
; E,ν are, respectively, Young’s modulus and Poisson’s ratio of ice, g is

the acceleration due to gravity, h is the very small thickness of ice of which a still smaller
part is immersed in water. The form of the ice-cover condition is derived on the assumption
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that the waves are long compared to the thickness of the ice-strip ([3, 14]). However, this con-
dition is not necessary in the derivation of the ice-cover condition in the form (2.3). This is
briefly explained in the Appendix A.

Also φ satisfies the bottom condition

∇φ→0 as y→∞, (2.4)

and the radiation conditions

φ→
{

e−Ky+iKx +Re−Ky−iKx as x→−∞,

T e−Ky+iK(x−l) as x→∞,
(2.5)

where R and T are the unknown reflection and transmission coefficients to be determined.
Due to zero bending moment and zero shear stress at the two ends of the ice-strip, we have
the edge conditions

φyxx →0 as x→0+0, l−0, y=0

and

φyxxx →0 as x→0+0, l−0, y=0. (2.6)

Also in the strip region,

φ(x, y)=αe−λKy+iλKx +βe−λKy−iλK(x−l)+χ(x, y), 0<x<l (2.7)

where α and β are unknown constants and χ(x, y) is a non-wavy solution of the Laplace
equation. The parameters β and α may be regarded as the reflection and the transmission
coefficients, respectively, through the points (0, l) and (0,0); λK is the real positive root of the
equation

Dk5 +k=K (2.8)

whose other roots are (λ1K, λ̄1K),(λ2K, λ̄2K) with Re(λ1)>0, Re(λ2)<0, Im(λ1, λ2)>0.
Let ψ(x, y) be defined by φ(x, y)= ψxx(x, y), and be represented by ψ1,ψ2,ψ3 in the

regions x<0, 0<x<l and x>l(y >0), respectively. Then by the Havelock expansion, ψi(i=
1,2,3) can be expressed as

ψ1(x, y)=− 1
K2

e−Ky+iKx − R

K2
e−Ky−iKx + 2

π

∫ ∞

0

A(ξ)L(ξ, y)eξx

ξ2 +K2
dξ, x <0, y >0, (2.9)

ψ2(x, y)=− 1
λ2K2

{αe−λKy+iλKx +βe−λKy−iλK(x−l)}− 1

λ2
1K

2
{A1e−λ1Ky+iλ1Kx

+A2e−λ1Ky−iλ1K(x−l)}− 1

λ̄1
2
K2

{A3e−λ̄1Ky+iλ̄1K(x−l)+A4e−λ̄1Ky−iλ̄1Kx}

+ 2
π

∫ ∞

0

B(ξ)eξ(x−l)+C(ξ)e−ξx

P (ξ)
M(ξ, y)dξ, 0<x<l, y >0, (2.10)

ψ3(x, y)=− T

K2
e−Ky+iK(x−l)+ 2

π

∫ ∞

0

G(ξ)L(ξ, y)

ξ2 +K2
e−ξ(x−l)dξ, x > l, y >0, (2.11)
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where A1,A2,A3,A4 are unknown constants and A(ξ),B(ξ),C(ξ) and G(ξ) are unknown
functions of suitable order and

L(ξ, y)= ξ cos ξy−K sin ξy,

M(ξ, y)= ξ(Dξ4 +1) cos ξy−K sin ξy

and

P(ξ)= ξ2(Dξ4 +1)
2 +K2.

By utilizing the conditions of continuity of ψ and ψx across the lines x=0 and x= l(y>0) we
obtain four relations involving the four unknown functions A,B,C and G which also involve
the unknown constants A1,A2 etc., and, to these four relations, if we then use Havelock’s
inversion theorem [15] we obtain the following eight relations in a straight forward manner.
(Note that for each application of Havelock’s inversion theorem, two distinct relations occur,
one of which represents the inversion formula and the other the constraint in the expansion
formula of Havelock (see [15])):

A(ξ)=−Kξ(λ−1)(α+βeiλKl)

λ2K2(ξ2 +λ2K2)
− Kξ(λ1 −1)(A1 +A2eiλ1Kl)

λ2
1K

2(ξ2 +λ2
1K

2)

−Kξ(λ̄1 −1)(A3e−iλ̄1Kl +A4)

λ̄2
1K

2(ξ2 + λ̄2
1K

2)
+ ξ2(1+Dξ4)+K2

P(ξ)
{B(ξ)e−ξ l +C(ξ)}

+2DKξ
π

∫ ∞

0

u5{B(u)e−ul +C(u)}
P(u)(u2 − ξ2)

du, (2.12)

ξA(ξ)=− iKξ(λ−1)(α−βeiλKl)

λK(ξ2 +λ2K2)
− iKξ(λ1 −1)(A1 −A2eiλ1Kl)

λ1K(ξ
2 +λ2

1K
2)

− iKξ(λ̄1 −1)(A3e−iλ̄1Kl −A4)

λ̄1K(ξ
2 + λ̄2

1K
2)

+ ξ2(1+Dξ4)+K2

P(ξ)
ξ{B(ξ)e−ξ l −C(ξ)}

+2DKξ
π

∫ ∞

0

u6{B(u)e−ul −C(u)}
P(u)(u2 − ξ2)

du, (2.13)

G(ξ)=−Kξ(λ−1)(αeiλKl +β)
λ2K2(ξ2 +λ2K2)

− Kξ(λ1 −1)(A1eiλ1Kl +A2)

λ2
1K

2(ξ2 +λ2
1K

2)

−Kξ(λ̄1 −1)(A3 +A4e−iλ̄1Kl)

λ̄2
1K

2(ξ2 + λ̄2
1K

2)
+ ξ2(1+Dξ4)+K2

P(ξ)
{B(ξ)+C(ξ)e−ξ l}

+2DKξ
π

∫ ∞

0

u5{B(u)+C(u)e−ul}
P(u)(u2 − ξ2)

du, (2.14)

ξG(ξ)= iKξ(λ−1)(αeiλKl −β)
λK(ξ2 +λ2K2)

+ iKξ(λ1 −1)(A1eiλ1Kl −A2)

λ1K(ξ
2 +λ2

1K
2)

+ iKξ(λ̄1 −1)(A3 −A4e−iλ̄1Kl)

λ̄1K(ξ
2 + λ̄2

1K
2)

− ξ2(1+Dξ4)+K2

P(ξ)
ξ{B(ξ)−C(ξ)e−ξ l}

−2DKξ
π

∫ ∞

0

u6{B(u)−C(u)e−ul}
P(u)(u2 − ξ2)

du, (2.15)
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1+R
2

= α+βeiλKl

λ2(λ+1)
+ A1 +A2eiλ1Kl

λ2
1(λ1 +1)

+ A3e−iλ̄1Kl +A4

λ̄2
1(λ̄1 +1)

− 2
π

∫ ∞

0

B(ξ)e−ξ l +C(ξ)
Q(ξ)

DK4ξ5dξ,

(2.16)

1−R
2

= α−βeiλKl

λ(λ+1)
+ A1 −A2eiλ1Kl

λ1(λ1 +1)
+ A3e−iλ̄1Kl −A4

λ̄1(λ̄1 +1)
+ 2i
π

∫ ∞

0

B(ξ)e−ξ l −C(ξ)
Q(ξ)

DK3ξ6dξ,

(2.17)

T

2
= αeiλKl +β
λ2(λ+1)

+ A1eiλ1Kl +A2

λ2
1(λ1 +1)

+ A3 +A4e−iλ̄1Kl

λ̄2
1(λ̄1 +1)

− 2
π

∫ ∞

0

B(ξ)+C(ξ)e−ξ l

Q(ξ)
DK4ξ5dξ,

(2.18)

T

2
= αeiλKl −β

λ(λ+1)
+ A1eiλ1Kl −A2

λ1(λ1 +1)
+ A3 −A4e−iλ̄1Kl

λ̄1(λ̄1 +1)
+ 2i
π

∫ ∞

0

B(ξ)−C(ξ)e−ξ l

Q(ξ)
DK3ξ6dξ,

(2.19)

where

Q(ξ)= (ξ2 +K2)P (ξ). (2.20)

There are altogether eight equations in the above relations (2.12–2.19) involving 12
unknowns A(ξ),B(ξ) etc. and the complete set of 12 equations for the determination of these
unknowns are provided by the additional four equations , representing the four edge condi-
tions, involving the two edges x=0 and x= l which are given by:

(λK)3(α+βeiλKl)+ (λ1K)
3(A1 +A2eiλ1Kl)+ (λ̄1K)

3(A3e−iλ̄1Kl +A4)

−2K
π

∫ ∞

0

B(ξ)e−ξ l +C(ξ)
P (ξ)

ξ5dξ =0, (2.21)

(λK)4(α−βeiλKl)+ (λ1K)
4(A1 −A2eiλ1Kl)+ (λ̄1K)

4(A3e−iλ̄1Kl −A4)

+2Ki
π

∫ ∞

0

B(ξ)e−ξ l −C(ξ)
P (ξ)

ξ6dξ =0, (2.22)

(λK)3(αeiλKl +β)+ (λ1K)
3(A1eiλ1Kl +A2)+ (λ̄1K)

3(A3 +A4e−iλ̄1Kl)

−2K
π

∫ ∞

0

B(ξ)+C(ξ)e−ξ l

P (ξ)
ξ5dξ =0, (2.23)

(λK)4(αeiλKl −β)+ (λ1K)
4(A1eiλ1Kl −A2)+ (λ̄1K)

4(A3 −A4e−iλ̄1Kl)

+2Ki
π

∫ ∞

0

B(ξ)−C(ξ)e−ξ l

P (ξ)
ξ6dξ =0. (2.24)

Elimination of A(ξ) between (2.12) and (2.13), and G(ξ) between (2.14) and (2.15) gives
rise to the following coupled Carleman-type singular integral equations for B(ξ) and C(ξ) :

µ(ξ)B1(ξ)+ 1
π

∫ ∞

0

B1(u)

u− ξ du− 1
π

∫ ∞

0

C1(u)

u+ ξ e−uldu=FB(ξ), ξ >0, (2.25)



26 R. Gayen et al.

µ(ξ)C1(ξ)+ 1
π

∫ ∞

0

C1(u)

u− ξ du− 1
π

∫ ∞

0

B1(u)

u+ ξ e−uldu=FC(ξ), ξ >0 (2.26)

where

(B1(ξ),C1(ξ))= DKξ5

P(ξ)
(B(ξ),C(ξ)), (2.27a)

µ(ξ)= ξ2(Dξ4 +1)+K2

DKξ5 (2.27b)

and

FB(ξ)= λ−1
2λ2K

{
αeiλKl

ξ − iKλ
+ β

ξ + iKλ

}
+ λ1 −1

2λ2
1K

{
A1eiλ1Kl

ξ − iKλ1
+ A2

ξ + iKλ1

}

+ λ̄1 −1

2λ̄2
1K

{
A3

ξ − iKλ̄1
+ A4e−iλ̄1Kl

ξ + iKλ̄1

}
, (2.28)

FC(ξ)= λ−1
2λ2K

{
α

ξ + iKλ
+ βeiλKl

ξ − iKλ

}
+ λ1 −1

2λ2
1K

{
A1

ξ + iKλ1
+ A2eiλ1Kl

ξ − iKλ1

}

+ λ̄1 −1

2λ̄2
1K

{
A3e−iλ̄1Kl

ξ + iKλ̄1
+ A4

ξ − iKλ̄1

}
. (2.29)

We note that FB(ξ) and FC(ξ) involve the unknown constants α,β,A1,A2,A3 and A4. In the
next section we describe a method to obtain approximate solutions for B1(ξ),C1(ξ).

3. Approximate solutions

In this section, we shall describe an approximate iterative method of solution of the system of
coupled integral Equations (2.25) and (2.26), when l is large. If we take the strip width l to
be so large that the terms which make the Equations (2.25) and (2.26) coupled vanish, then
we get two uncoupled equations for B0

1 (ξ) and C0
1(ξ), as given by

µ(ξ)B0
1 (ξ)+

1
π

∫ ∞

0

B0
1 (u)

u− ξ du=F 0
B(ξ), ξ >0, (3.1)

µ(ξ)C0
1(ξ)+

1
π

∫ ∞

0

C0
1(u)

u− ξ du=F 0
C(ξ), ξ >0, (3.2)

for the zero-order approximations B0
1 and C0

1 of the functions B1 and C1, where F 0
B(ξ) and

F 0
C(ξ) are given by (2.28) and (2.29) with the unknown constants α,β etc. replaced by α0, β0

etc. and neglecting the terms involving eiλ1Kl and e−iλ̄1Kl as these are then exponentially small
for large l. Now we can solve the integral equations (3.1) and (3.2) by converting them into
Riemann-Hilbert problems (see [14]). We find that the solutions of the integral Equations
(3.1) and (3.2) are given by:

B0
1 (ξ)=

λ−1
2λ2K

{α0eiλKlPα(ξ)+β0Pβ(ξ)}+ λ1 −1

2λ2
1K

A0
2P2(ξ)+ λ̄1 −1

2λ̄2
1K

A0
3P3(ξ) (3.3)
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and

C0
1(ξ)=

λ−1
2λ2K

{α0Pβ(ξ)+β0eiλKlPα(ξ)}+ λ1 −1

2λ2
1K

A0
1P2(ξ)+ λ̄1 −1

2λ̄2
1K

A0
4P3(ξ) (3.4)

where Pα(ξ) is given by

Pα(ξ)=

+

0 (ξ)

µ(ξ)− i

{
µ(ξ)


+
0 (ξ)(µ(ξ)+ i)

1
ξ − iKλ

− 1
π

∫ ∞

0

du


+
0 (u)(µ(u)+ i)(u− ξ)(u− iKλ)

}
,

with similar expressions representing the other P -functions.
Also


0(ζ )= exp
[

1
2π i

∫ ∞

0

{(
log

[
µ(t)− i
µ(t)+ i

]
− lim

t→∞ log
[
µ(t)− i
µ(t)+ i

])
/(t− ζ )

}
dt

]
, ζ /∈ (0,∞)

(3.5)

holds good, along with


±(ξ)=±1
2
B0

1 (ξ)+
1

2π i

∫ ∞

0

B0
1 (u)

u− ξ du, ξ >0. (3.6)

Now, by considering the integral∫
�0

1

0(τ )(τ − iKλ)

dτ
τ − ζ , ζ /∈�0, (3.7)

where �0 is a positively oriented contour consisting of a loop around the positive real axis
having indentations above the point τ = ξ + i0 and below the point τ = ξ − i0 and a circle of
large radius with centre at the origin, in the complex τ -plane, we can evaluate the integral in
the expression for Pα(ξ). Thus we obtain

Pα(ξ)=

+

0 (ξ)

µ(ξ)− i
1


0(iKλ)(ξ − iKλ)
. (3.8)

Pβ(ξ),P2(ξ) and P3(ξ) are obtained in a similar manner.
To determine the zero-order approximations to the constants, we use Equations (2.16–2.19)

and (2.21–2.24). By using the relations (2.27a) in these equations, and then making l large
enough, so that B1(ξ) and C1(ξ) can be replaced by B0

1 (ξ) and C0
1(ξ), respectively, we obtain

the following eight equations for the determination of the eight unknowns R0, T 0, α0 etc.:

1+R0

2
= α0 +β0eiλKl

λ2(λ+1)
+ A0

1

λ2
1(λ1 +1)

+ A0
4

λ̄2
1(λ̄1 +1)

− 2K3

π

∫ ∞

0

C0
1(ξ)

ξ2 +K2
dξ, (3.9)

1−R0

2
= α0 −β0eiλKl

λ(λ+1)
+ A0

1

λ1(λ1 +1)
− A0

4

λ̄1(λ̄1 +1)
− 2K2i

π

∫ ∞

0

ξC0
1(ξ)

ξ2 +K2
dξ, (3.10)

T 0

2
= α0eiλKl +β0

λ2(λ+1)
+ A0

2

λ2
1(λ1 +1)

+ A0
3

λ̄2
1(λ̄1 +1)

− 2K3

π

∫ ∞

0

B0
1 (ξ)

ξ2 +K2
dξ, (3.11)

T 0

2
= α0eiλKl −β0

λ(λ+1)
− A0

2

λ1(λ1 +1)
+ A0

3

λ̄1(λ̄1 +1)
+ 2K2i

π

∫ ∞

0

ξB0
1 (ξ)

ξ2 +K2
dξ, (3.12)
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(λK)3(α0 +β0eiλKl)+ (λ1K)
3A0

1 + (λ̄1K)
3A0

4 − 2
Dπ

∫ ∞

0
C0

1(ξ)dξ =0, (3.13)

(λK)4(α0 −β0eiλKl)+ (λ1K)
4A0

1 − (λ̄1K)
4A0

4 − 2i
Dπ

∫ ∞

0
ξC0

1(ξ)dξ =0, (3.14)

(λK)3(α0eiλKl +β0)+ (λ1K)
3A0

2 + (λ̄1K)
3A0

3 − 2
Dπ

∫ ∞

0
B0

1 (ξ)dξ =0, (3.15)

(λK)4(α0eiλKl −β0)− (λ1K)
4A0

2 + (λ̄1K)
4A0

3 + 2i
Dπ

∫ ∞

0
ξB0

1 (ξ)dξ =0. (3.16)

Substitution of B0
1 (ξ) and C0

1(ξ) from (3.3) and (3.4) in (3.9–3.16) will produce the follow-
ing linear system of eight equations:

A0X0 =B, (3.17)

where A0 = (a0
ij ) is an 8×8 matrix, X0 and B are column vectors having the forms

X0 =
[
α0, β0,A0

1,A
0
2,A

0
3,A

0
4,R

0, T 0
]T

(3.18)

and

B = [1,1,0,0,0,0,0,0]T . (3.19)

The matrix elements a0
ij ’s are explicitly given in Appendix B. These elements will involve

integrals of the form∫ ∞

0


+
0 (ξ)

µ(ξ)− i
L1(ξ)

L2(ξ)
dξ (3.20)

where L1(ξ) and L2(ξ) are polynomial expressions in ξ . These integrals are calculated by con-
sidering integrals of the following type∫

�


0(ζ )
L1(ζ )

L2(ζ )
dζ,

where � is a positively oriented closed contour consisting of a loop around the positive real
axis and a circle of large radius, with centre at the origin, in the complex ζplane. If the poly-
nomials L1(ζ ),L2(ζ ) are such that the contribution to the integral in (3.20) over the circle of
large radius vanishes, then the integral in (3.20) becomes equal to

−π(sum of residues of 
0
L1

L2
at the poles lying inside �).

Since we can calculate the values of 
0 at different points by using the relation (3.5), the
elements of the matrix A0 are completely determined. Thus, the zero-order approximations to
the different constants are obtained by solving the matrix equation (3.17). Thus, the functions
B0

1 (ξ) and C0
1(ξ) are fully known from Equations (3.3) and (3.4), respectively.

To obtain the next higher-order (first-order) approximate solutions B1
1 (ξ) and C1

1(ξ) of
Equations (2.25) and (2.26), we substitute C0

1 in place of C1 in Equation (2.25) and B0
1 in

place of B1 in Equation (2.26), giving the Carleman equations

µ(ξ)B1
1 (ξ)+

1
π

∫ ∞

0

B1
1 (u)

u− ξ du=F 1
B(ξ), ξ >0, (3.21)
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and

µ(ξ)C1
1(ξ)+

1
π

∫ ∞

0

C1
1(u)

u− ξ du=F 1
C(ξ), ξ >0, (3.22)

where

F 1
B(ξ)=

1
π

∫ ∞

0

C0
1(u)e

−ul

u+ ξ du+ λ−1
2λ2K

{
α1eiλKl

ξ − iKλ
+ β1

ξ + iKλ

}

+λ1 −1

2λ2
1K

{
A1

1eiλ1Kl

ξ − iKλ1
+ A1

2

ξ + iKλ1

}
+ λ̄1 −1

2λ̄2
1K

{
A1

3

ξ − iKλ̄1
+ A1

4e−iλ̄1Kl

ξ + iKλ̄1

}
, (3.23)

and

F 1
C(ξ)=

1
π

∫ ∞

0

B0
1 (u)e

−ul

u+ ξ du+ λ−1
2λ2K

{
α1

ξ + iKλ
+ β1eiλKl

ξ − iKλ

}

+λ1 −1

2λ2
1K

{
A1

1

ξ + iKλ1
+ A1

2eiλ1Kl

ξ − iKλ1

}
+ λ̄1 −1

2λ̄2
1K

{
A1

3e−iλ̄1Kl

ξ + iKλ̄1
+ A1

4

ξ − iKλ̄1

}
. (3.24)

The integral equations (3.21) and (3.22) can be solved by using a technique similar to the
one used to solve the Equations (3.1) and (3.2), and we find:

B1
1 (ξ)=

λ−1
2λ2K

{α1eiλKlPα(ξ)+β1Pβ(ξ)}+ λ1 −1

2λ2
1K

{A1
1eiλ1KlP1(ξ)+A1

2P2(ξ)}

+ λ̄1 −1

2λ̄2
1K

{A1
3P3(ξ)+A1

4e−iλ̄1KlP4(ξ)} (3.25)

and

C1
1(ξ)=

λ−1
2λ2K

{α1Pβ(ξ)+β1eiλKlPα(ξ)}+ λ1 −1

2λ2
1K

{A1
1P2(ξ)+A1

2eiλ1KlP1(ξ)}

+ λ̄1 −1

2λ̄2
1K

{A1
3e−iλ̄1KlP4(ξ)+A1

4P3(ξ)} (3.26)

where the superscript ‘1’ denotes the first-order approximation to the corresponding quanti-
ties. It may be noted that, to arrive at the results (3.25) and (3.26), we utilized results of inte-
grals of the form∫

�0

g(τ), h(τ )


0(τ )(τ − ζ )dτ, ζ /∈�0, (3.27)

where

(g, h)(τ )= 2
π

∫ ∞

0

(B0
1 ,C

0
1)(u)e

−ul

u+ τ du, (3.28)

which can be taken to be zero approximately for large l. This means that there is no contri-
bution to B1

1 (ξ) and C1
1(ξ) arising from the integrals in (3.23) and (3.24).

Since B1
1 (ξ) and C1

1(ξ) are now obtained in terms of the unknown constants α1, β1,A1
1,A

1
2,

A1
3,A

1
4, use of (2.27a) in the Equations (2.16–2.19) and (2.21–2.24) produces the following
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eight equations for the first-order approximations to the the eight unknown constants, viz.
α1, β1,A1

1,A
1
2,A

1
3,A

1
4,R

1 and T 1:

1+R1

2
= α1 +β1eiλKl

λ2(λ+1)
+ A1

1 +A1
2eiλ1Kl

λ2
1(λ1 +1)

+ A1
3e−iλ̄1Kl +A1

4

λ̄2
1(λ̄1 +1)

−2K3

π

∫ ∞

0

B1
1 (ξ)e

−ξ l +C1
1(ξ)

ξ2 +K2
dξ, (3.29)

1−R1

2
= α1 −β1eiλKl

λ(λ+1)
+ A1

1 −A1
2eiλ1Kl

λ1(λ1 +1)
+ A1

3e−iλ̄1Kl −A1
4

λ̄1(λ̄1 +1)

+2K2i
π

∫ ∞

0

B1
1 (ξ)e

−ξ l −C1
1(ξ)

ξ2 +K2
ξdξ, (3.30)

T 1

2
= α1eiλKl +β1

λ2(λ+1)
+ A1

1eiλ1Kl +A1
2

λ2
1(λ1 +1)

+ A1
3 +A1

4e−iλ̄1Kl

λ̄2
1(λ̄1 +1)

−2K3

π

∫ ∞

0

B1
1 (ξ)+C1

1(ξ)e
−ξ l

ξ2 +K2
dξ, (3.31)

T 1

2
= α1eiλKl −β1

λ(λ+1)
+ A1

1eiλ1Kl −A1
2

λ1(λ1 +1)
+ A1

3 −A1
4e−iλ̄1Kl

λ̄1(λ̄1 +1)

+2K2i
π

∫ ∞

0

B1
1 (ξ)−C1

1(ξ)e
−ξ l

ξ2 +K2
ξdξ, (3.32)

(λK)3(α1 +β1eiλKl)+ (λ1K)
3(A1

1 +A1
2eiλ1Kl)+ (λ̄1K)

3(A1
3e−iλ̄1Kl +A1

4)

− 2
Dπ

∫ ∞

0
{B1

1 (ξ)e
−ξ l +C1

1(ξ)}dξ =0, (3.33)

(λK)4(α1 −β1eiλKl)+ (λ1K)
4(A1

1 −A1
2eiλ1Kl)+ (λ̄1K)

4(A1
3e−iλ̄1Kl −A1

4)

+ 2i
Dπ

∫ ∞

0
{B1

1 (ξ)e
−ξ l −C1

1(ξ)}ξdξ =0, (3.34)

(λK)3(α1eiλKl +β1)+ (λ1K)
3(A1

1eiλ1Kl +A1
2)+ (λ̄1K)

3(A1
3 +A1

4e−iλ̄1Kl)

− 2
Dπ

∫ ∞

0
{B1

1 (ξ)+C1
1(ξ)e

−ξ l}dξ =0, (3.35)

(λK)4(α1eiλKl −β1)+ (λ1K)
4(A1

1eiλ1Kl −A1
2)+ (λ̄1K)

4(A1
3 −A1

4e−iλ̄1Kl)

+ 2i
Dπ

∫ ∞

0
{B1

1 (ξ)−C1
1(ξ)e

−ξ l}ξdξ =0. (3.36)

In order to calculate the coefficients in the above equations, we have to calculate integrals
of the type (3.20). In addition we have to evaluate, approximately for large l, the following
types of integrals:∫ ∞

0


+
0 (ξ)

µ(ξ)− i
L1(ξ)

L2(ξ)
e−ξ ldξ. (3.37)
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This is achieved by using the Watson’s lemma (cf. [16, p. 438]). For this we require factoriza-
tion of the function [µ(ξ)− i] as

µ(ξ)− i= 1
DKξ5 (ξ − iK)(ξ + iKλ)(ξ + iKλ1)(ξ + iKλ̄1)

×(ξ + iKλ2)(ξ + iKλ̄2).

The results will involve 
0(±iK),
0(±iKλ),
0(±iKλ1),
0(±iKλ̄1),

+
0 (0) and 
+′

0 (0) (prime
denotes differentiation) which are calculated from the expression (3.5) of 
0(ζ ). Thus the first-
order corrections to the unknown constants are obtained. Utilizing these in Equations (3.25)
and (3.26), we finally obtain B1

1 (ξ) and C1
1(ξ) completely. Then from Equation (2.12) or (2.13)

and from Equation (2.14) or (2.15) the first-order approximations to the functions A(ξ) and
G(ξ) are obtained. The second- and other higher-order approximations to the unknown con-
stants and functions can be obtained by repeating this iterative process. The numerical study
based on the first-order approximate values R1 and T 1 of R and T shows that the identity
|R1|2 +|T 1|2 = 1 is almost true for various values of the different parameters of the problem.
Thus, the iterative procedure explained above has produced an approximate solution of the
problem under consideration, with the use of the first-order approximations and hence further
higher-order approximations have not been carried out here.

4. Numerical results

In this section the graphs of |R0|, |R1|, |T 0| and |T 1| are analyzed in order to understand the
difference between the zero-order and the first-order approximate values of the reflection and
transmission coefficients. For numerical computations a characteristic length L proportional
to the wavelength is introduced in order to make the different parameters non-dimensional.
Thus, KL, l/L and D/L4 are, respectively, the dimensionless wave number, strip width and
ice-cover parameter.

In the Figures 1 and 2, |R0| and |R1| are compared for two different width parameters
l/L= 10,100 against the wave number KL; the ice-cover parameter being kept fixed at the
very small value D/L4 = 0·001. From Figure 1 it may be observed that the curve of |R1|
always lies above the curve of |R0|. However, as the strip width increases, Figure 2 shows that
the differences between the values of |R0| and |R1| decrease. Again, these two figures indi-
cate that the reflection coefficient is small enough when the ice-cover parameter is very small,
irrespective of the strip-width. As D/L4 decreases, the effect of the ice-strip on the incoming
waves becomes weaker. As a result, a major part of the incident wave is transmitted through
the edges of the ice-sheet.

The graphs of |R1| for different values of the ice-cover parameter D/L4 and for l/L=10
are plotted in Figure 3. This figure indicates that |R1| gradually increases with the increase
in D/L4. If the elastic parameters (E and ν) are assumed to be fixed, the only factor that
affects D is the thickness of the ice-sheet. Thus, from this figure we may draw the conclusion
that, if ice-sheets composed of homogeneous material (in the sense that E and ν are constants
throughout the material) are considered, those with a greater thickness, i.e., heavier ice-strips,
exert more resistance on the incident wave.

Figures 4 and 5 display |R0|, |R1|, |T 0| and |T 1| against the ice-cover parameter D/L4

for l/L= 10, and for two different wavenumbers KL= 1 and KL= 2, respectively. It may be
noticed from these two figures that the distinction between the zero-order and the first-order
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Figure 1. |R0| and |R1| for 1/L = 10 and D/L4 =
0·001.

Figure 2. |R0| (- - -) and |R1| (- - -) for 1/L= 100 and
D/L4 =0·001.

Figure 3. |R1| for different values of D/L4, I/L=10. Figure 4. |R0|, |R1|, |T 0| and |T 1| for I/L = 10
and KL=1.

approximations to the physical quantities (R and T ) diminishes for larger wavenumber. Also,
when KL= 2, the reflection coefficient is larger than that for KL= 1. The above two fea-
tures are seen to hold good, even when the width parameter l/L increases to 100. This has
been depicted in Figures 6 and 7. However, the number of zeros of the reflection coefficient
increases for larger strip width. Thus, multiple reflections by the two edges of the ice-sheet
increase with the increase in its width. Note that the phenomenon of occurrence of more mul-
tiple reflections for a wider strip was also seen to hold when |R0| and |R1| were depicted
against the wavenumber for small D/L4 (Figures 1 and 2).
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Figure 5. |R0|, |R1|, |T 0|, |T 1| for I/L = 10
and KL=2.

Figure 6. |R0|, |R1|, |T 0|, |T 1| for I/L = 100
and KL=1.

Figure 7. |R0|, |R1|, |T 0| and |T 1| for I/L=100 and KL=2.

5. Conclusion

The boundary-value problem describing the scattering of surface water waves by a strip of
ice-cover of finite width has been considered for a suitable mathematical treatment, for its
complete solution. The problem is reduced to two coupled singular integral equations of
the Carleman type which were solved approximately for large strip width. As is well known
(cf. [16, Section 9.12]), the problems of scattering of electromagnetic and acoustic waves, by
strips of finite width, can not be solved in closed form and an approximate method of solu-
tion has been devised by Jones [16] to solve such scattering problems which are valid for large
values of the width of the strip, and in order to obtain acceptable solutions valid for any finite
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width, one has to carry out a large number of iterations producing such approximate solu-
tions.

The Wiener-Hopf technique is believed to be the most powerful tool to attack the
class of scattering problems, for which the basic partial differential equation happens to
be the Helmholtz’s equation. The problem of scattering by a strip is reduced to a three-
part Wiener-Hopf problem that cannot be solved in closed form, like the standard two-part
Wiener-Hopf problem. Hence, approximate methods of solution of such scattering problems
are the only possibilities. In the case of problems of scattering of surface water waves one
encounters Laplace’s equation instead of Helmholtz’s equation as the basic partial differen-
tial equation and, in order to employ the Wiener-Hopf technique to handle such boundary-
value problems, a special limiting procedure (cf. [17, 18]) was found to be useful. In a previous
study (cf. [18]), the problem of scattering of surface water waves by a rigid strip was investi-
gated and an approximate solution of the boundary-value problem was obtained by using a
limiting process along with the Wiener-Hopf technique. The problem treated in the present
work is a generalization of the previous one, in the sense that the rigid strip is replaced by
a strip of ice cover, producing a more complicated boundary-value problem. A more natu-
ral method of employing a generalized Havelock-type expansion, along with the application
of the techniques of solving systems of singular integral equations, involving a large param-
eter, by the aid of Riemann-Hilbert problems and related mathematical ideas, is employed
to handle the present general problem in the theory of scattering of surface water waves, by
floating ice-strips. The numerical results for the reflection and transmission coefficients have
been determined for a number of choices of the basic parameters of the problem and these
results have been presented graphically. As a check on our results, we have always verified the
energy criterion (|R|2 +|T |2 =1), ensuring the acceptability of the approximate method used.
The major feature of the curves for the reflection coefficients is that these are oscillatory in
nature, which can be attributed to multiple reflections due to the two edges of the ice-strip.
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APPENDIX A

In deriving the ice-cover condition (2.3), if the assumption that waves are long compared to
the thickness is not made, we find that the ice-cover condition takes the form

Kφ+ (D∂4
x +1− εK)φy =0 on y=0, (A1)

where ερ is the constant surface density of the ice-cover, ρ is the density of water and ε is a
constant having dimension of length. For 1− εK >0, the condition (A1) can be modified as

K∗φ+ (D∗∂4
x +1)φy =0 on y=0 (A2)

where K∗ =K/(1− εK), D∗ =D/(1− εK). This is of the same form as (2.3). For 1− εK <0,
the condition (A1) can be rewritten as

K ′φ+ (D′∂4
x −1)φy =0 on y=0 (A3)
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where

K ′ =K/(εK−1), D′ =D/(εK−1).

For deep water, φ(x, y) has the wave type solution

φ(x, y)= e−ky±ikx.

Then, the wave parameter k satisfies

K− (Dk4 +1− εK)k=0. (A4)

The above equation always possesses a real positive root whether 1−εK is positive or neg-
ative (cf. [2]) so long as D �= 0. Thus, without any loss of generality, the ice-cover condition
can be taken in the form given by (2.3) for 1 − εK > 0. For 1 − εK < 0, the only change in
(2.3) is that the plus sign before φy is to be replaced by a minus sign but, as the nature of
the roots of (A4) remains the same, a similar analysis can be made with a slight modification.

APPENDIX B

The matrix A0 appearing in (3.17) has the form


aβ aαeiλKl a2 0 0 a3 −1 0
bβ −bαeiλKl b2 0 0 −b3 1 0
aαeiλKl aβ 0 a2 a3 0 0 −1
bαeiλKl −bβ 0 b2 b3 0 0 −1
cα cαeiλKl c1 0 0 c3 0 0
λKcα −λKcαeiλKl λ1Kc1 0 0 −λ̄1Kc3 0 0
cαeiλKl cα 0 c1 c3 0 0 0
λKcαeiλKl −λKcα 0 −λ1Kc1 λ̄1Kc3 0 0 0



,

where

aα,β= 2K3

(λK)2(λK+K) − 2K3(λK−K)
π(λK)2

Iα,β, a1,2= 2K3

(λ1K)
2(λ1K+K) − 2K3(λ1K−K)

π(λ1K)
2

I1,2,

a3,4= 2K3

(λ̄1K)
2(λ̄1K+K) − 2K3(λ̄1K−K)

π(λ̄1K)
2

I3,4, bα,β= 2K2

λK(λK+K) ± 2K2i(λK−K)
π(λK)2

Jα,β,

b1,2= 2K2

λ1K(λ1K+K) ± 2K2i(λ1K−K)
π(λ1K)

2
J1,2, b3,4= 2K3

λ̄1K(λ̄1K+K) ± 2K2i(λ̄1K−K)
π(λ̄1K)

2
J3,4,

Iα =π
[

1
(λK)2 −K2

+ 1
2K
0(iλK)

{

0(−iK)
λK+K − 
0(iK)

λK−K
}]
,

Jα =π i
[

λK

(λK)2 −K2
− 1

2
0(iλK)

{

0(−iK)
λK+K + 
0(iK)

λK−K
}]
.

Iβ, I1, I2, I3, I4 =Iα with λ replaced by −λ,λ1,−λ1, λ̄1,−λ̄1, respectively. Similar arguments
hold for the J ’s also.

cα = (λK)3 + λK−K
D(λK)2

, c1 = (λ1K)
3 + λ1K−K

D(λ1K)
2
, c3 = (λ̄1K)

3 + λ̄1K−K
D(λ̄1K)

2
.
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In order to determine the first-order approximations to the constants, B1
1 (ξ) and C1

1(ξ) are
substituted from (3.25) and (3.26) in Equations (3.29–3.36). This gives rise to the following
matrix equation

A1X1 =B,

where A1 = (a1
ij ) and X1 = [α1, β1, . . . ,R1, T 1]. The coefficients a1

ij are computed from the
following:

a1
11 =a1

32 =a0
11 − 2K3(λK−K)

π(λK)2
eiλKlIαl, a

1
12 =a1

31 =a0
12 − 2K3(λK−K)

π(λK)2
Iβl

a1
13 =a1

34 =a0
13 − 2K3(λ1K−K)

π(λ1K)
2

eiλ1KlI1l , a
1
14 =a1

33 =a1eiλ1Kl − 2K3(λ1K−K)
π(λ1K)

2
I2l

a1
15 =a1

36 =a4e−iλ̄1Kl − 2K3(λ̄1K−K)
π(λ̄1K)

2
I3l , a

1
16 =a1

35 =a0
16 − 2K3(λ̄1K−K)

π(λ̄1K)
2

e−iλ̄1KlI4l

a1
21 =−a1

42 =a0
21 + 2K2i(λK−K)

π(λK)2
eiλKlJαl, a

1
22 =−a1

41 =a0
22 + 2K2i(λK−K)

π(λK)2
Jβl

a1
23 =−a1

44 =a0
23 + 2K2i(λ1K−K)

π(λ1K)
2

eiλ1KlJ1l , a
1
24 =−a1

43 =−b1eiλ1Kl + 2K2i(λ1K−K)
π(λ1K)

2
J2l

a1
25 =−a1

46 =b4e−iλ̄1Kl + 2K2i(λ̄1K−K)
π(λ̄1K)

2
J3l , a

1
26 =−a1

45 =a0
26 + 2K2i(λ̄1K−K)

π(λ̄1K)
2

e−iλ̄1KlJ4l

a1
51 =a1

72 =a0
51 − λK−K

πD(λK)2
eiλKlI ′

αl, a
1
52 =a1

71 =a0
52 − λK−K

πD(λK)2
I ′
βl

a1
53 =a1

74 =a0
53 − λ1K−K

πD(λ1K)
2

eiλ1KlI ′
1l , a

1
54 =a1

73 = c1eiλ1Kl − λ1K−K
πD(λ1K)

2
I ′

2l

a1
55 =a1

76 = c3e−iλ̄1Kl − λ̄1K−K
πD(λ̄1K)

2
I ′

3l , a
1
56 =a1

75 =a0
56 − λ̄1K−K

πD(λ̄1K)
2

e−iλ̄1KlI ′
4l

a1
61 =−a1

82 =a0
61 + i(λK−K)

πD(λK)2
eiλKlJ ′

αl, a
1
62 =−a1

81 =a0
62 + i(λK−K)

πD(λK)2
J ′
βl

a1
63 =−a1

84 =a0
63 + i(λ1K−K)

πD(λ1K)
2

eiλ1KlJ ′
1l , a

1
64 =−a1

83 =−λ1Kc1eiλ1Kl + i(λ1K−K)
πD(λ1K)

2
J ′

2l

a1
65 =−a1

86 = λ̄1Kc3e−iλ̄1Kl + i(λ̄1K−K)
πD(λ̄1K)

2
J ′

3l , a
1
66 =−a1

85 =a0
66 + i(λ̄1K−K)

πD(λ̄1K)
2

e−iλ̄1KlJ ′
4l
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where

Iαl =
∫ ∞

0

Pα(ξ)e−ξ l

ξ2 +K2
dξ, I ′

αl =
∫ ∞

0
Pα(ξ)e−ξ ldξ

Jαl =
∫ ∞

0

ξPα(ξ)e−ξ l

ξ2 +K2
dξ, J ′

αl =
∫ ∞

0
ξPα(ξ)e−ξ ldξ

The above integrals are evaluated using Watson’s lemma (cf. [15, p. 438]).
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